Национальный технический университет «Харьковский политехнический институт», КП «Горводоканал» Сумского городского совета

Биохимическая технология биоминеральных удобрений на основе природной и техногенной сырьевой базы Украины

Доктор технических наук, проф. Тошинский В.И. Аспирант Ракша Н.В.

г. Харьков – г. Сумы

Снижение затрат на очистку стоков Получение дополнительного продукта

Создание нового биоминерального удобрения

Технологический процесс очистки стоков

1. Механическая очистка

2. Биологическая очистка

3. Отделение активного ила

4. Обработка активного ила

5. Обеззараживание и сброс сточных вод

Основные проблемы площадок складирования осадков:

- дополнительное отчуждение земель
- вероятность санитарного загрязнения территории
- необходимость постоянного экологического мониторинга территории

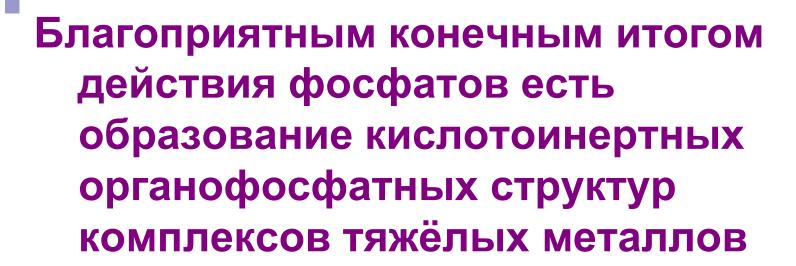
Аэротенки – сооружения биологической очистки

Вторичные отстойники – сооружения отстаивания и отделения от сточных вод осадка – активного ила

Площадки складирования ОСВ (КОС г. Сумы)

Основные пути утилизации ОСВ

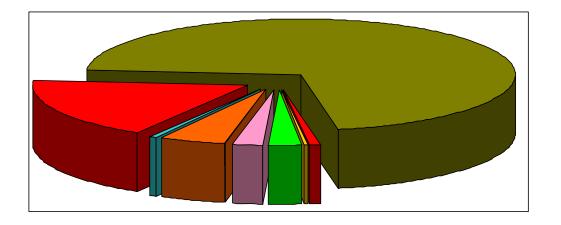
- агроиспользование
- сырьё для строительных материалов, пластмасс
- получение товаров для народного хозяйства (аминокислот, технического витамина В12, технических жиров)
- сжигание с получением дополнительной энергии


Состав осадка сточных вод

- органическая часть
 - углеводы, белки, жиры, клетчатка, гуминовые соединения, в том числе патогенная микрофлора
- минеральная часть
 - минеральные элементы и микроэлементы, в том числе соединения тяжёлых металлов

Химический состав ОСВ г. Сумы

Проба	Cu	Со	Ni	Cd	Zn	Mn	Pb	Cr
Nº1	310,16	4,10	201,4	12,42	964,38	175,45	85,56	345,41
Nº2	370,42	2,99	236,2	14,62	1062,26	167,51	89,59	468,71
Nº3	439,94	4,89	231,8	15,63	1207,51	171,52	86,47	449,57
Сред-	373,51	3,99	223,2	14,22	1078,05	171,49	87,21	421,23
ПДК	55-1500	2-100	50-200	10-30	44-3000	60-715	300- 1200	200- 1200


Обобщение данных модельных исследований показало тот факт, что конечными формами преобразований тяжёлых металлов стают стойкие продукты, т.е. природа разработала соответствующие механизмы для аккумулирования даже излишних количеств техногенных веществ в виде миграционно инертных форм.

Закономерности циклического хода процессов трансформации фосфора указывают на перспективу вовлечения в направленный вещественный обмен фосфоритов, которые из-за низкого содержания фосфора остаются вне внимания современных технологий

Ресурсы украинских месторождений

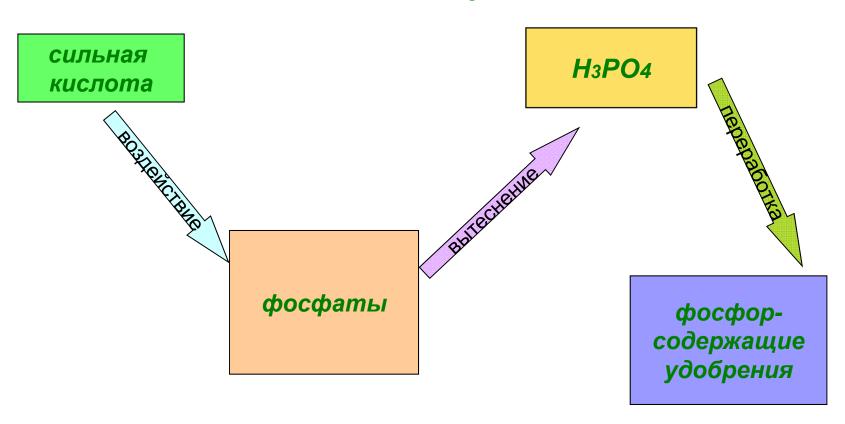
фосфоритов

- Осиковское
- Южно-Осиковский участок
- Ново-Амвросиевское
- Котовское
- Стремигородское
- Новополтавское
- Ратновское
- Иршанский ГРР
- **■** остальные

Запасы украинских фосфоритов

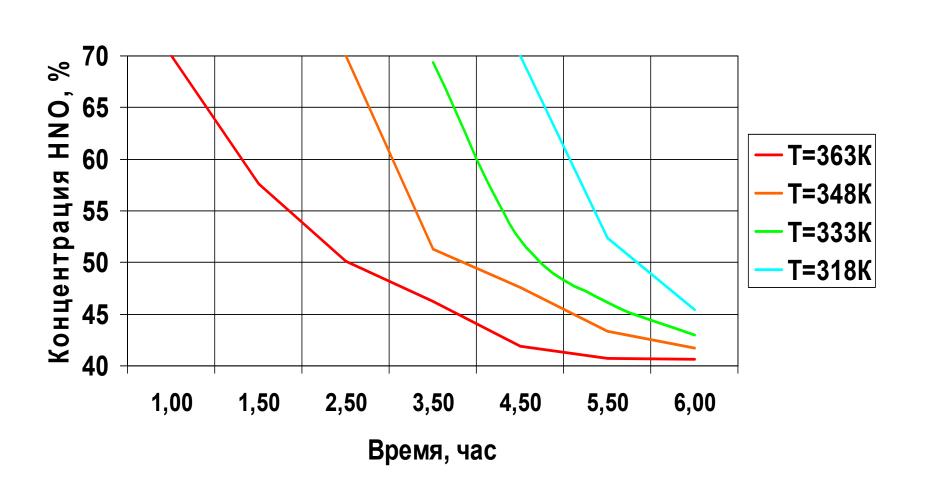
Месторождение	Запасы Р₂О₅, млн.т	Содержание Р₂О₅, %	
Стремигородское – Житомирская обл.	31,8	2,7-2,8	
Новополтавское – Запорожская обл.	73,5	5,2	
Осиковское – Донецкая обл.	11,2	4,84-5,2	
- Южно-Осиковский участок	1,41	5,98	
Ново-Амвросиевское – Донецкая обл.	1,6	6-8	
Ратновское – Волынская обл.	7,31	5,59	
Котовское – Одесская обл.	37	4,26	
Иршанский горно-рудный район (Фёдоровское, Выдоборовское, Паромовское, Кропивенское)	258	3-10	
Северо-Западный регион (Маневичско-Клеванское и Здолбуновско-Тернопольское)	1025	5,31	

Основная характеристика фосфатов украинских месторождений


- Высокое содержание Р₂О₅ в лимонно- растворимой форме
- Наличие калия и микроэлементов
- Низкие концентрации тяжёлых металлов
- Низкое содержание радиоактивных элементов
- Протекторная способность к тяжёлым металлам в почве
- Пролонгированное действие
- Невысокое содержание Р₂О₅ от 5 до19% массы руды
- Значительный разброс гранулометрических показателей

Получение фосфорной кислоты

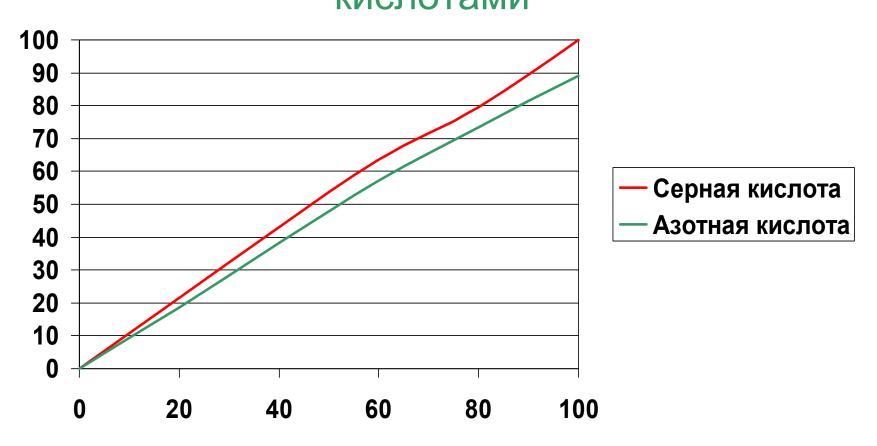
Метод экстракции


Одним из перспективных направлений переработки фосфоритов считается азотнокислотное разложение.

Ca₅(PO₄)₃F+10HNO₃=3H₃PO₄+5Ca(NO₃)₂+HF

Перспективность – в возможности комплексной переработки фосфатного сырья

Зависимость времени выщелачивания Р2О5 от температуры и концентрации


раствора азотной кислоты

Степень извлечения фосфора в зависимости от продолжительности обработки

Время	Степень извлечения фосфора				
обработки, мин	При обработке HNO ₃ (60%, T=363K)	При обработке H ₂ SO ₄ (60%, T=363K)			
0	0	0			
20	21,5	18,5			
40	43,1	38,4			
60	63,5	57,2			
80	79,2	73,5			
100	99,9	89,0			

Зависимость степени извлечения фосфорсодержащих соединений от времени и температуры обработки азотной и серной кислотами

Наличие тяжёлых металлов в обработанном ОСВ

Проба	Cu	Со	Ni	Cd	Zn	Mn	Pb	Cr
Сред- нее до обра- ботки	373,51	3,99	223,2	14,22	1078,05	171,49	87,21	421,23
Сред- нее после обра- ботки	39,508	3,493	89,755	7,535	487,274	130,468	8,268	199,847
ПДК	55- 1500	2-100	50-200	10-30	44-3000	60-715	300- 1200	200- 1200

Результаты проведения вегетативных исследований

- 0 суперфосфат
- 1 необработанный ОСВ
- 2 ОСВ и обработанный азотной кислотой фосфорит, без нейтрализации рН=5
- 3 ОСВ и обработанный серной кислотой фосфорит
- 4 ОСВ и обработанный азотной кислотой фосфорит

Результаты проведения вегетативных исследований

- 0 суперфосфат (вес зел. массы 1,63)
- 3 ОСВ и обработанный серной кислотой фосфорит (вес зел. массы 1,23)
- 4 ОСВ и обработанный азотной кислотой фосфорит (вес зел. массы 1,87)

